Парабола, в том числе функция y = x², является одной из фундаментальных функций в математике, потому что имеет множество применений в науке и технике. mathema.me
Понимание свойств параболы позволяет не только решать математические задачи, но и применять эти знания в реальной жизни — от проектирования зданий до расчёта траекторий движения. mathema.me
Некоторые свойства функции y = x²:
- Область определения — множество всех действительных чисел. fizmat.by
- Значение y = 0 является наименьшим, а наибольшего значения функция не имеет. fizmat.by
- Функция является чётной, график симметричен относительно оси Оу. fizmat.by resh.edu.ru
- Парабола имеет с осями координат единственную общую точку (0;0) — начало координат. fizmat.by
- Функция убывает на промежутке (–∞; 0] и возрастает на промежутке [0; +∞). resh.edu.ru
- Противоположным значениям х соответствует одинаковые значения y. resh.edu.ru